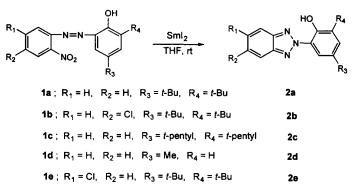


PII: S0040-4039(97)10207-6

Reductive Cyclization of *o*-Nitrophenylazobenzenes to 2-Aryl-2*H*-benzotriazoles by SmI₂

Byeong Hyo Kim,* Sun Kyong Kim, Yoon Seok Lee, Young Moo Jun, Woonphil Baik,* and Byung Min Lee^b

Department of Chemistry, Kwangwoon University, Seoul, 139-701, Korea. *Department of Chemistry, Myong Ji University, Kyung Ki Do, Korea. *KRICT, Taejon, Korea.


Abstract: In a mild reaction with SmI_2 , ortho-nitro substituted phenylazobenzenes have been converted into 2-aryl-2*H*-benzotriazoles. © 1997 Elsevier Science Ltd.

Although samarium diiodide mediated reaction has been developed into a powerful synthetic method during the last decade,¹ there are a limited number of literature precedents for reaction with the nitro functionality.²⁻⁵ Furthermore there are, to our knowledge, no literature examples of the samarium diiodide mediated reductive cyclization of nitro substituted compounds to yield nitrogen containing heterocyclic compound.

2-(2'-Hydroxyphenyl)-2*H*-benzotriazoles (2) are widely used as ultraviolet absorbers for the protection of commercially important plastics against sunlight.⁶ A wide variety of reagents have been employed for the conversion of *o*-nitrophenylazobenzenes (1) to $2^{.7\cdot11}$ However, most of the methods have limitations, *e.g.* benzotriazole *N*-oxide formation,⁸ formation of *o*-aminoazophenols which are hard to remove from the major product,¹⁰ dechlorination of chloro substituted *o*-nitrophenylazo dyes,¹¹ work-up difficulties,¹² and/or drastic reaction conditions. Moreover, there are no examples of reactions under neutral condition. Herein we describe an efficient and mild reductive cyclization of 1 with SmI₂ in THF, at room temperature, to the corresponding benzotriazoles 2 without the formation of any *o*-aminoazophenols or benzotriazole *N*-oxides (Scheme 1).

Our work concerning the reductive cyclization of 1 using SmI_2 is summarized in the Table. The driving force for such transformations is believed to come from the powerful reducing ability of Sm^{2+} [E^o (Sm^{3+}/Sm^{2+}) = -1.55 V] which behaves as a one-electron donor. The high yields of the cyclized products 2 demonstrate the efficiency of this new method.

Scheme 1

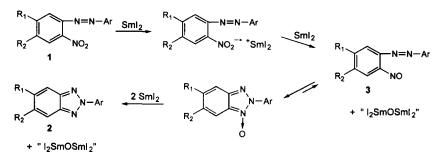
Benzotriazole *N*-oxide was observed if less than ~ 6 equiv. of SmI_2 was used (Table, entries 1, 2). With increasing amounts of SmI_2 , the benzotriazole *N*-oxide decreased gradually [4 equiv. of SmI_2 , 10% (Table, entry 1); 5 equiv. of SmI_2 , 3% (Table, entry 2)] and none of the intermediate benzotriazole *N*-oxide was observed if more than 6 equiv. of SmI_2 was used. Apparently the reductive cyclization of 1 to 2 proceeds through an intermediate stage involving the benzotriazole *N*-oxide.¹³ The optimum condition for the reductive cyclization was obtained by using 7 equiv. of SmI_2 at room temperature (Table, entries 6 - 10). It is worth mentioning that chloro-substituted *o*-nitrophenylazobenzenes **1b** or **1e** reacted without giving any of dechlorinated products even though SmI_2 has a quite powerful electron donating ability. If we added protic

entry	substrate	SmI ₂	conditions	product	yield (%)
1	1a	4 equiv.	rt, 4 h.	2a	34 ^{b,c}
2	1a	5 equiv.	rt, 4 h.	2a	43 ^{b,d}
3	1 a	6 equiv.	rt, 2.5 h.	2a	70°
4	1 a	7 equiv.	MeOH (5 mL) ^f , rt, 2.5 h.	2a	28 ^{e.g}
5	1a	7 equiv.	HMPA (2 mL) ^h , rt, 2.5 h.	2a	25 ^{e,i}
6	1a	7 equiv.	rt, 2.5 h.	2a	94 °
7	1b	7 equiv.	rt, 2.7 h.	2ь	84 °
8	1 c	7 equiv.	rt, 2.7 h.	2c	85°
9	1d	7 equiv.	rt, 50 min.	2d	97°
10	1e	7 equiv.	rt, 40 min.	2e	91 °

Table. Reductive Cyclization of o-Nitrophenylazobenzenes (1) using SmI₂ in THF.^a

⁴All reactions were carried out with 0.3 mmol of reactant (1) in 20 mL of THF. ^bIsolated yield. ^c10% of benzotriazole *N*-oxide was obtained and 22% of 1a was recovered. ^d3% of benzotriazole *N*-oxide was obtained and 20% of 1a was recovered. ^cIS mL of THF was used. ^s35% of 1a was recovered. ^b18 mL of THF was used. ⁱ43% of 1a was recovered.

solvents such as MeOH or polar solvents such as HMPA to the reaction mixture, mixtures of several products including **1a** and **2a** were formed and the yield of **2a** was not as good as the reaction in THF (Table, entries **4**, 5).


A typical procedure for the SmI₂ mediated cyclization reaction follows. To a stirred solution of freshly prepared SmI₂ (from Sm/CH₂I₂) in THF (10 mL) under the nitrogen atmosphere was added a solution of the *o*-nitrophenylazobenzene 1 (0.3 mmol) in THF (10 mL) dropwise using a syringe pump (15 - 20 min.) at room temperature. The reaction mixture was stirred at room temperature until the reaction was complete, and poured into a solution of 10% aqueous NH₄Cl. The mixture was extracted with diethyl ether (3 x 30 mL). The combined organic extracts were dried over MgSO₄, filtered, and concentrated. The residue was chromatographed over silica gel (hexane /EtOAc, 99 : 1) to give **2**.

To confirm the intermediacy of benzotriazole *N*-oxide formation, electrolysis reactions were carried out. Based on the cyclic voltametric behavior, **1a** was reduced under a controlled potential [Pt cathode and anode, $0.4 \text{ M LiClO}_4/(\text{MeOH} : \text{CH}_2\text{Cl}_2 = 1 : 1, v/v)$, - 0.75 V vs. Ag/AgCl] using a devided H cell. As we expected, benzotriazole *N*-oxide was obtained exclusively in 93% yield without the formation of **2a**. By changing the conditions of the electrolysis [Pt cathode and anode, 0.2 M NaOH/(THF : H₂O = 1 : 1, v/v), - 1.3 V vs. Ag/AgCl], **1b** or the *N*-oxide derived from **1b** is transformed to **2b** as the exclusive product in 92% (starting substrate; **1b**) and 97% (starting substrate; *N*-oxide derived from **1b**). It is apparent that the electron transfer ability controls the reductive cyclization reaction.

Little mechanistic information is currently available for the reactions of nitrogen compounds with SmI₂. Evans reported that 2 equiv. of $Sm(C_5Me_5)_2$ deoxygenated pyridine *N*-oxides or 1,2-epoxybutane and was transformed into the complex $(C_5Me_5)_2Sm-O-(C_5Me_5)_2$ whose structure was established by X-ray crystallography.¹⁴ Zhang and Lin also demonstrated the deoxygenation of pyridine *N*-oxides by SmI₂.⁴ By analogy, when SmI₂ is either used to cyclize *o*-nitrophenylazobenzenes (1) by transferring electrons to nitro group or used to remove an oxygen atom from *N*-oxide, the formation of a complex I₂Sm-O-SmI₂ can be postulated. This species may later disproportionates into SmI₃ and a soluble species "SmIO" whose exact structure is not established yet. Based on Evans' and our results, a possible reaction mechanism is shown in Scheme 2. The unstable intermediates, *o*-nitrosophenylazobenzenes (3) may immediately form the benzotriazole *N*-oxides. Further controlled experiments are currently under way to prove pathways of the reaction mechanism in detail.

In summary, the reductive cyclization of aromatic nitro compounds using SmI₂, provides an efficient and selective method for the synthesis of 2-(2'-hydroxyphenyl)-2*H*-benzotriazoles which are commercially useful ultraviolet absorbers.

Scheme 2

Acknowledgment: The financial support for this project was provided from Basic Science Research Institute Program, Ministry of Education (BSRI-97-3448) and the Korea Science and Engineering Foundation (95-0501-06-01-3). We are grateful to Professor Glen A. Russell at Iowa State University for his helpful comments and editing this manuscript.

References and Notes

- 1. Molander, G. A.; Harris, C. R. Chem. Rev. 1996, 96, 307.
- 2. Souppe, J.; Danon, L.; Namy, J. L.; Kagan, H. B. J. Organometal. Chem. 1983, 250, 227.
- 3. Kagan, H. B.; Namy, J. L.; Tetrahedron 1986, 42, 6573.
- 4. Zhang, Y.; Lin, R. Synth. Commun. 1987, 17, 329.
- 5. Sturgess, M. A.; Yarberry, D. J. Tetrahedron Lett. 1993, 34, 4743.
- 6. Gachter, R.; Muller, H. Plastics Additives Handbook. 3rd ed.; Hanser Publisher: New York, 1990; p25.
- 7. Rosevear, J.; Wilshire, J. Aust. J. Chem. 1984, 37, 2489.
- 8. Rosevear, J.; Wilshire, J. Aust. J. Chem. 1982, 35, 2089.
- 9. White, H. L.; Krolewski, C. V. Ger. Pat. 2620896, 1976; Chem. Abstr. 1977, 86, 106598s.
- 10. Ziegler, C. E.; Peterli, H. J. Swiss Pat. 615165, 1980; Chem. Abstr. 1980, 93, 8181a.
- 11. White, H. L.; Ger. Pat. 2551853, 1976; Chem. Abstr. 1976, 85, 108646j.
- 12. Baik, W.; Park, T. H.; Kim, B. H.; Jun, Y. M. J. Org. Chem. 1995, 60, 5683.
- 13. Electrochemically prepared benzotriazole *N*-oxide derived from 1a was transformed to 2a exclusively (>98%) within 10 min. by the SmI₂ reduction at room temperature.
- 14. Evans, W. J.; Grate, J. W.; Bloom, I.; Hunter, W. E.; Atwood, J. L. J. Am. Chem. Soc. 1985, 107, 405.

(Received in Japan 18 August 1997; revised 17 September 1997; accepted 18 September 1997)